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Abstract—We propose real-time channel tracking for underwa-
ter acoustic communications under dynamic sea conditions. The
key idea is to employ sophisticated sparse sensing techniques
that are cognizant of stable or slowly time-varying channel com-
ponents against a transient background. Shallow water acoustic
channel is generally challenging to track under moderate to rough
sea conditions. This is primarily due to non-stationary highly
transient elements within the channel delay spread resulting from
rapidly fluctuating multipath arrivals from unpredictable sur-
face wave reflections. The proposed channel estimation method
exploits two channel characteristics: (i) Inherent sparsity of the
time-varying channel in the two-dimensional dual (Fourier) do-
main; and (ii) Relative dominance of the direct arrival and slowly
varying multipath arrivals against the otherwise non-stationary
channel impulse response. Specifically, we utilize this apriori
information to compressed sensing (CS) framework and thus,
achieve channel sensing cognizant of time-frequency localization
across significant channel taps. Numerical evidence based on
data-driven channel ground truths are presented.

Index Terms—Underwater acoustic channel estimation, com-
pressed sensing

I. INTRODUCTION

Underwater acoustic channel estimation in shallow water
depths is a challenging problem due to rapidly fluctuating
transients in the acoustic channel impulse response. Transmit-
ted signal undergoes non-stationary reflections at the moving
sea surface and rough sea bottom before being received via
multiple paths at the receiver [1, 2]. These non-stationary
reflections along with unpredictable surges of energy due to
surface focusing events [3] render the channel delay spread
challenging to localize in time, frequency, and sparsity. The
goal of this work is to track the time-varying delay taps by
exploiting physics-based channel characteristics such as the
relative stationarity of direct and slowly varying multipath
arrivals with respect to more transient multipath effects.

Figure 1 shows the two-dimensional (2-D) Fourier transform
of shallow water acoustic channel over experimental field
data collected at 15 meters depth and 200 meters range
under moderate to rough sea conditions. Delay refers to the
delay taps constituting the channel impulse response at a
given time instant on the x-axis. In a medium range shallow
water acoustic channel, there are two bands of interference
besides the direct arrival: (i) the primary multipath interference
dominated by single surface reflections, and (ii) secondary

multipath interference dominated by multiple bounce reflec-
tions between moving sea surface and rough sea bottom.
Additionally, sparsely distributed high-energy events such as
surface wave focusing occur in both bands, thus rendering
channel tracking in this paradigm exceptionally difficult.

Sparse sensing techniques (see e.g. [4-14]) for tracking the
shallow water acoustic channel in medium ranges face two
related challenges: (i) Non-stationary and rapidly time-varying
delay taps, and (ii) Non-stationary temporal fluctuations of
the support sparsity itself [5]. Furthermore, directly applying
sparse sensing techniques suppresses detection of smaller
channel delay taps, which are typically more persistent and
hence, easier to predict, and often serve as a build-up to high-
energy transients. Thus, there is a compelling need to bridge
the gap between real-time detection of high-energy transients
with high-precision tracking of stationary albeit smaller delay
taps.

A. Background Motivation and Key Innovations

In this work, we propose a physics-driven approach to
dynamic channel sensing by bridging concepts from acoustic
communications and sparse optimization. The key idea is
to employ sophisticated sparse sensing techniques that are
cognizant of relatively stationary channel components against
a non-stationary background. We draw upon recent work on
designing suitable input signal dictionaries in the 2-D Fourier
domain for MIMO (Multiple Input Multiple Output) transmis-
sion and signalling recovery [15]. We noted in [15] that the
channel is sparse in the 2-D Fourier domain. Additionally, we
exploit the relative importance of direct (line of sight) and
slowly varying multipath arrivals (e.g. single surface bounce
reflections without focusing phenomena) to robustly assess the
channel. Specifically, we do not impose any sparse sensing of
the most dominant and stable channel elements that manifest in
the low Doppler frequency ranges in the 2-D Fourier domain.
Numerical evidence demonstrates that the proposed approach
achieves lower estimator error over conventional compressing
sensing techniques [16, 17].

II. SYSTEM MODEL AND RELATED ART

In this section, we present the system model and review
recent work on underwater acoustic channel estimation [15]



Fig. 1: 2-D Fourier Transform of Underwater Channel

that we extend significantly in this paper into a physics-driven
compressive sensing framework.

We adopt the established model [1,2,4] of the time-varying
shallow water acoustic channel using K delay taps and L
Doppler frequencies, where the Doppler spectrum is used to
localize time-variability of each channel delay tap. We also
adopt the MIMO framework presented in [15] where the input
signal is a complex exponential x[i, fk] = ej

2πifk
K sampling

K possible delay frequencies {fk}K−1
k=0 across parallel sub-

channels and L Doppler frequencies {fl}L−1
l=0 in the Doppler

domain. To visualize the combined MIMO signalling and
acoustic channel framework introduced in [15], first consider
the noise-free scenario where the received signal y[i, fk] at
time instant i in sub-channel fk is mathematically modelled
as:

y[i, fk] =

K−1∑
k=0

h[i, k]x[i− k, fk]

=

K−1∑
k=0

h[i, k]ej
2π(i−k)fk

K (1)

where h is the K-tap length time-varying channel specified at
different time instants i. With algebraic manipulations, (1) can
be re-written as

y[i, fk] = ej
2πifk
K

K−1∑
k=0

h[i, k]e−j
2πkfk
K (2)

and modified to obtain

yw[i, fk] = y[i, fk]e
−j

2πifk
K =

K−1∑
k=0

h[i, k]e−j
2πkfk
K (3)

where yw[i, fk] represents the received signal y[i, fk] weighted
by e−j

2πifk
K . Equation (3) represents the one-dimensional (1-

D) Fourier transform of the channel h[i, k] along the second
dimension, i.e., along the channel delay spread. Taking 1-D
Fourier transform of (3) along the first dimension (i.e., the

time variable i), we obtain

U [fl, fk] =

L−1∑
l=0

yw[i, fk]e
−j

2πifl
L

=

L−1∑
l=0

K−1∑
k=0

h[i, k]e−j
2πifl
L e−j

2πkfk
K (4)

Thus, U is the 2-D Fourier transform of H, i.e.

U = FH (5)

where H is the matrix form of time varying channel h[i, k],
U is the matrix form of U [fl, fk], and F is the 2-D Fourier
operator. The receiver estimates the channel H via 2-D inverse
Fourier transform of U.

Now consider the noisy scenario, where the signal received
is modeled as:

Uobs = FH + N

= U + N (6)

where N refers to the complex white Gaussian noise matrix
of size L×K. Direct 2-D inverse Fourier transform of U in
(6) will clearly not be able to estimate H precisely due to the
noise process. However, (6) can be solved for U using the
following optimization framework

min
u
||uobs − u|| < σ (7)

where u and uobs are the vectorized forms of U and Uobs

respectively, ||u|| denotes the l2 norm of the vector u, and
σ is the standard deviation or the measure of the noise level
present in the signal.

III. PHYSICS-DRIVEN ACOUSTIC CHANNEL ESTIMATION
USING COMPRESSIVE SENSING

Prior art [15] presented above utilizes all samples of the
observed signal Uobs for channel estimation and therefore, is
extremely sub-optimal in exploiting the underlying sparsity of
the shallow water acoustic channel. It also does not attempt
to harness well-known underwater acoustic phenomena and
is therefore, agnostic of overlapping bands of stationary and
non-stationary elements within the channel delay spread. Fun-
damentally, the physics-agnostic framework in [15] as well as
the current state-of-the-art in shallow water channel estimation
(see e.g. [4,5,18] and references within) completely ignore
the coexistence of non-stationary high-energy transients due
to surface wave focusing [3] and relatively steady delay taps
due to direct arrival and persistent multipath. Considering this
complex interplay between these diverse physical processes
within the same channel is critical to disambiguation of
sparse and non-sparse channel characteristics which in turn, is
crucial to successful deployment of sparse sensing techniques.
Therefore, we propose a physics-driven compressive sensing
framework that employs apriori information on relatively
steady dominant channel elements to track transient high-
energy channel elements with higher precision.



In subsection III-A, we discuss channel estimation using
basic CS in the 2-D Fourier domain. Section III-B explains
the proposed channel estimation using physics inspired CS
method. Both these approaches exploit the sparsity of channel
in the 2-D frequency domain.

A. Basic CS based Channel Estimation with Partial Sampling
at the Receiver

The channel H can be estimated from its partially sampled
Fourier transform using as explained in the sequel. Figure-1
clearly demonstrates the inherent sparsity of the channel U
in the 2-D Fourier domain. Let n = LK be the dimension
of u, the vectorized form of U. We sample m points (where
m < n) of U using the sensing matrix Φ of size m× n as:

u1 = Φu (8)

where u1 represents the vector containing the sampled points
of u. In practice, owing to noise, we observe the signal

u1,obs = Φu + η (9)

where η is additive white Gaussian noise of size m× 1. The
above system of equations is under-determined that can not
be solved directly, and therefore, we employ CS based opti-
mization to solve this problem. On modelling the estimation of
channel u as Basis Pursuit Denoising (BPDN) problem [18],
we write it mathematically as below

min
u
||u||1 subject to : ||u1,obs −Φu|| < σ (10)

The above equation can be solved with the MATLAB solver
SPGL1 [19]. After obtaining u from the above optimization
formulation, (5) is used to estimate channel H.

B. Physics Inspired CS based Channel Estimation with Partial
Sampling at the Receiver end

In the previous subsection we used basic CS to estimate
the channel, but did not use any apriori information about
the channel. We now include physics-driven apriori constraints
within the sparse sensing framework to derive a constrained
optimal solution that accounts for the different channel el-
ements that contribute to its complex nature. The Doppler
frequency column at fl = 0 represents the direct line of sight
communication in the 2-D Fourier domain of the channel (U),
and by design, is the most stable and dominant component of
the channel. Also, the single surface bounce in the primary
multipath will have persistent low-frequency dominant com-
ponents. We use the apriori information on the known channel
support at zero and low Doppler frequencies in CS framework
for channel estimation. Specifically, we do not impose sparse
sensing of the zero and first Doppler frequency components
that manifest as the three center columns of U.

Generalizing the above discussion, let us assume that T
denotes the support of elements of vector u to be used as
apriori information, i.e., support of u that contains dominant
steady components of the channel. Instead of sparse sensing
on entire u, we propose to carry out sparse sensing on the

Fig. 2: Channel estimation using basic CS at 10dB

subspace of dimension |T c| = n− |T |, where |T | denotes the
cardinality of the set T . The problem is formulated as below

min
u
||u||1 subject to : ||u1,obs −ΦRu|| < σ (11)

where ΦR is the restricted sampling operator that includes
apriori information on T and hence, random sampling on T c.
On solving the above optimization problem, we obtain the
estimate of U and hence, the channel H.

IV. EXPERIMENTS AND RESULTS

In this section, we demonstrate results using both basic
CS and proposed physics-inspired CS as discussed in the
previous section. We provide numerical evidence of superior
performance against [15].

Experiments are performed on MATLAB 2013a platform
on a 2.60 GHz i5 processor with 16 GB RAM for different
window lengths with sampling ratios varying from 40% to
100%. For each window length and sampling ratio, results with
different noise levels are averaged for 200 iterations. White
Gaussian noise is added to the received signal. Channel signal-
to-noise ratio (SNR) in dB is defined as below:

Channel SNR = 10 log10


1

LK

L−1∑
i=0

K−1∑
k=0

|h[i, k]|2

σ2

 (12)

where σ2 represents noise variance. Normalized Mean Square
Error (NMSE) in dB is used as performance metric to quantify
the channel estimation results and is defined as below

NMSE = 10 log10


L−1∑
i=0

K−1∑
k=0

|h[i, k]− ĥ[i, k]|

L−1∑
i=0

K−1∑
k=0

|h[i, k]|2

 (13)

where h[i, k] is the ground truth of the channel and ĥ[i, k]
represents the estimated channel.

Figures 2 to 5 present results with noisy channel SNR
of 10dB and 5dB using method of [15], basic CS, and the
proposed physics-inspired CS over different window lengths



Fig. 3: Channel estimation using proposed method at 10dB

Fig. 4: Channel estimation using basic CS at 5dB

(in time) and sampling ratios of 40% to 100%. From these
figures, we note that

1) 100% sampling ratio in basic CS performs better to
method of [15] for both 10dB and 5dB. This indicates
that with sparsity in the 2-D Fourier domain channel
as considered in this work, better results are obtained
over [15] where denoising of channel was performed by
imposing l1 norm constraint on the time domain channel.

Fig. 5: Channel estimation using proposed method at 5dB

2) Better channel estimation results are obtained with the
proposed physics-inspired CS framework compared to
basic CS. At 100% sampling ratios both basic CS
and physics-inspired CS are identical, physics-inspired
knowledge helps with better denoising at lower sampling
ratios.

3) NMSE reduces with the decreasing sampling ratio in the
proposed method. The known apriori information sam-
ples in 2-D Fourier domain have high SNR compared to
the rest of the sparser less amplitude coefficients. This
implies that at lower sampling ratios, more number of
higher amplitude positions (with higher SNR) are picked
up compared to 100% sampling ratio. This leads to better
noise suppression and hence, the proposed framework
with physics inspired CS recovers channel with greater
accuracy at lower sampling ratios.

V. CONCLUSION

We have proposed a method for underwater acoustic channel
estimation using physics inspired CS framework. The physics-
based method is designed based on knowledge of the dominant
and relatively steady components of the channel. Specifically,
we harness channel sparsity in the two-dimensional Fourier
domain with prior information on the support of the dominant
direct arrival and persistent multipath arrivals that are typically
the result of non-focusing single surface reflections. From a
physics perspective, this known support comprises of delay
taps that contribute to both high-energy (direct arrival) and
low-energy (persistent multipath) components that are crucial
in the shallow water acoustic channel. Thus, we do not impose
sparse sensing on this known support. The proposed frame-
work enhances the underlying sparsity of the non-stationary
channel delay spread that remains to be estimated. Comparison
results show significant improvement in employing shallow
water channel estimation algorithms with proposed CS over
basic CS. We also observe better performance in physics
inspired CS with decreasing sampling ratio as is expected from
the reduced sparse subspace.
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